92 research outputs found

    Bose-Einstein Condensation in Competitive Processes

    Get PDF
    We introduce an irreversible discrete multiplicative process that undergoes Bose-Einstein condensation as a generic model of competition. New players with different abilities successively join the game and compete for limited resources. A player's future gain is proportional to its ability and its current gain. The theory provides three principles for this type of competition: competitive exclusion, punctuated equilibria, and a critical condition for the distribution of the players' abilities necessary for the dominance and the evolution. We apply this theory to genetics, ecology and economy.Comment: 4 pages, 3 figures, submitted to PR

    Online Estimation of Multiple Dynamic Graphs in Pattern Sequences

    Full text link
    Sequences of correlated binary patterns can represent many time-series data including text, movies, and biological signals. These patterns may be described by weighted combinations of a few dominant structures that underpin specific interactions among the binary elements. To extract the dominant correlation structures and their contributions to generating data in a time-dependent manner, we model the dynamics of binary patterns using the state-space model of an Ising-type network that is composed of multiple undirected graphs. We provide a sequential Bayes algorithm to estimate the dynamics of weights on the graphs while gaining the graph structures online. This model can uncover overlapping graphs underlying the data better than a traditional orthogonal decomposition method, and outperforms an original time-dependent Ising model. We assess the performance of the method by simulated data, and demonstrate that spontaneous activity of cultured hippocampal neurons is represented by dynamics of multiple graphs.Comment: 8 pages, 4 figures v2: IJCNN 2019, results unchange

    A recipe for optimizing a time-histogram

    Get PDF
    Abstract The time-histogram method is a handy tool for capturing the instantaneous rate of spike occurrence. In most of the neurophysiological literature, the bin size that critically determines the goodness of the fit of the time-histogram to the underlying rate has been selected by individual researchers in an unsystematic manner. We propose an objective method for selecting the bin size of a time-histogram from the spike data, so that the time-histogram best approximates the unknown underlying rate. The resolution of the histogram increases, or the optimal bin size decreases, with the number of spike sequences sampled. It is notable that the optimal bin size diverges if only a small number of experimental trials are available from a moderately fluctuating rate process. In this case, any attempt to characterize the underlying spike rate will lead to spurious results. Given a paucity of data, our method can also suggest how many more trials are needed until the set of data can be analyzed with the required resolution

    Uncovering hidden network architecture from spiking activities using an exact statistical input-output relation of neurons

    Get PDF
    神経回路網の構造をつきとめる --神経活動と回路構造をつなぐ新しい地図を作成--. 京都大学プレスリリース. 2023-02-16.Charting a course in the brainy frontier. 京都大学プレスリリース. 2023-02-17.Identifying network architecture from observed neural activities is crucial in neuroscience studies. A key requirement is knowledge of the statistical input-output relation of single neurons in vivo. By utilizing an exact analytical solution of the spike-timing for leaky integrate-and-fire neurons under noisy inputs balanced near the threshold, we construct a framework that links synaptic type, strength, and spiking nonlinearity with the statistics of neuronal population activity. The framework explains structured pairwise and higher-order interactions of neurons receiving common inputs under different architectures. We compared the theoretical predictions with the activity of monkey and mouse V1 neurons and found that excitatory inputs given to pairs explained the observed sparse activity characterized by strong negative triple-wise interactions, thereby ruling out the alternative explanation by shared inhibition. Moreover, we showed that the strong interactions are a signature of excitatory rather than inhibitory inputs whenever the spontaneous rate is low. We present a guide map of neural interactions that help researchers to specify the hidden neuronal motifs underlying observed interactions found in empirical data

    Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations

    Get PDF
    The models in statistical physics such as an Ising model offer a convenient way to characterize stationary activity of neural populations. Such stationary activity of neurons may be expected for recordings from in vitro slices or anesthetized animals. However, modeling activity of cortical circuitries of awake animals has been more challenging because both spike-rates and interactions can change according to sensory stimulation, behavior, or an internal state of the brain. Previous approaches modeling the dynamics of neural interactions suffer from computational cost; therefore, its application was limited to only a dozen neurons. Here by introducing multiple analytic approximation methods to a state-space model of neural population activity, we make it possible to estimate dynamic pairwise interactions of up to 60 neurons. More specifically, we applied the pseudolikelihood approximation to the state-space model, and combined it with the Bethe or TAP mean-field approximation to make the sequential Bayesian estimation of the model parameters possible. The large-scale analysis allows us to investigate dynamics of macroscopic properties of neural circuitries underlying stimulus processing and behavior. We show that the model accurately estimates dynamics of network properties such as sparseness, entropy, and heat capacity by simulated data, and demonstrate utilities of these measures by analyzing activity of monkey V4 neurons as well as a simulated balanced network of spiking neurons.DFG, 103586207, GRK 1589: Verarbeitung sensorischer Informationen in neuronalen Systeme
    corecore